Limits of functions

Lecturer: Changhao CHEN

The Chinese University of Hong Kong

21 Feb 2020

(CUHK) Limits of functions



@ Continue on limits of functions

@ 10 min break

@ Continuous functions

(CUHK) Limits of functions



Excises

Find the following limits:
lim 5x> + x? + 1
x—1
X+ 2
im
x-3x2 41

1 1
lim (= —
XILQ)(X X+1)

. 1
lim x?cos | =
x—0 X
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Sandwich Theorem for Functions

If f(x) < g(x) < h(x) for all x e R\{xp} and

lim f(x) = lim h(x) = L,

X—X0 X—X0

then lim,_,,, g(x) = L.
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Sandwich Theorem for Functions

If f(x) < g(x) < h(x) for all x e R\{xp} and

lim f(x) = lim h(x) = L,

X—X0 X—X0

then lim,_,,, g(x) = L.
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Find the limit
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Find the limit

. 5 1
lim x“cos | — | .
x—0 X

Answer: For any x # 0 we have —1 < cos (%) <1,
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Find the limit

. 5 1
lim x“cos | — | .
x—0 X

Answer: For any x # 0 we have —1 < cos (%) < 1, and hence

—x* < x%cos (1) < X%
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Find the limit

. 5 1
lim x“cos | — | .
x—0 X

Answer: For any x # 0 we have —1 < cos (%) < 1, and hence
—x? < x?cos (%) < x%. Thus Sandwich Theorem implies
limy_.o x* cos (£) = 0.
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Find the limit

. 5 1
lim x“cos | — | .
x—0 X

Answer: For any x # 0 we have —1 < cos (%) < 1, and hence
—x? < x?cos (%) < x%. Thus Sandwich Theorem implies
limy_.o x* cos (£) = 0.
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Limits at infinity of functions
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Limits at infinity of functions

Firstly recall |lim,_, a,.
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Limits at infinity of functions

Firstly recall |lim,_, a,.

Definition

Let f : R — R be a function. If f(x) gets closer and closer to a real
number L as x gets bigger and bigger, then L is called the limit of
f(x) at positive +o0. We write

lim f(x) = L.

X—+00

x =+ = f(x)—> L.
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Similarly definition for the limit at negative infinity —oo, that is

lim f(x).

X——00
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Similarly definition for the limit at negative infinity —oo, that is

lim f(x).

X——00

X
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Similarly definition for the limit at negative infinity —oo, that is

lim f(x).

X——00

X

From this picture we could write

lim f(x)=L and lim f(x)= M.

X——+00 X—>—00
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Find Ilmx_,+OO im0 2, Ilmx_,l and lim, o © L
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Find Ilmx_,+OO im0 2, Ilmx_,l and lim, o © 1
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Find limits of
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Find limits of

In fact we also have

lim (1) =0 lim 2*¥ =0.
X—>—+00 2 X——00
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If0 <a<1thenlim, ,pna* =0.
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If0 <a<1thenlim, ,pna* =0.

If a> 1 then lim,_,_,a* = 0.
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If0 <a<1thenlim, ,pna* =0.

If a> 1 then lim,_,_,a* = 0.

a>1

y=a

==l
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Algebraic properties of limits at infinity

If both lim,_, ;o f(x) and lim,_,;, g(x) exist (Important condition),
then
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Algebraic properties of limits at infinity

If both lim,_, ;o f(x) and lim,_,;, g(x) exist (Important condition),
then
lim f(x)+g(x) = lim f(x)+ lim g(x);

X—+00 X—+00 X—+00
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Algebraic properties of limits at infinity

If both lim,_, ;o f(x) and lim,_,;, g(x) exist (Important condition),
then
lim f(x)+g(x) = lim f(x)+ lim g(x);

X—+00 X—+00 X—+00

lim f(x)—g(x) = lim f(x)— lim g(x);

X—+00 X—+00 X—400

(CUHK) Limits of functions



Algebraic properties of limits at infinity

If both lim,_, ;o f(x) and lim,_,;, g(x) exist (Important condition),
then
lim f(x)+g(x) = lim f(x)+ lim g(x);

X—+00 X—+00 X—+00

lim f(x)—g(x) = lim f(x)— lim g(x);

X—+00 X—+00 X—400

lim f(x)g(x) = lim f(x) lim g(x);

X—400 X—400 X—400
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Algebraic properties of limits at infinity

If both lim,_, ;o f(x) and lim,_,;, g(x) exist (Important condition),
then
lim f(x)+g(x) = lim f(x)+ lim g(x);

X—+00 X—+00 X—+00

lim f(x)—g(x) = lim f(x)— lim g(x);

X—+00 X—+00 X—400

lim f(x)g(x) = lim f(x) lim g(x);

X—400 X—+00 X—400

f limy_ o0 F : .
lim () = Mo (X), if lim g(x)#0.
T g(x)  imymg(x) | et
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3x2
x24x+1"

Find lim,_, ;o
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3x2
x24x+1"

Find lim,_, ;o

: 3x?
lim ——
x—+0 x? + x4+ 1
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3x2
x24x+1"

Find lim,_, ;o

: 3x?
lim ——
x—+0 x? + x4+ 1

i 3
= lim ——
xotol4+ 24 L

X
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3x2
x24x+1"

Find lim,_, ;o

: 3x?

lim ——————
x—+0 x? + x4+ 1
. 3
_HIT<><>1+§+XL2

3

- 3

1+0+0
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Rational polynomials

Example

Let p(x) and g(x) are polynomials that

p(x) = amx™ + am_1 X"t 4+ ...+ a1x + ap with a,, # 0 and
q(x) = byx" + a,_1x" 1 + ... + bix + by with b, # 0.Then
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Rational polynomials

Example

Let p(x) and g(x) are polynomials that
p(x) = amx™ + am_1x™ 1 + ...+ a1x + ag with a,, # 0 and
q(x) = byx" + a,_1x" 1 + ... + bix + by with b, # 0.Then

(x) ‘Z—';’ ifm=n
lim =<0
X—+00 q(X

jo]

ifm<n.

~—

+oo ifm>n
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

T - ()
xE»Tooa p(X)_anoo a" B
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

lim a*p(x) = lim pin)

X—>—+00 n—+0w g

= 0.
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

lim a*p(x) = lim pin)

X—>—+00 n—+0w g

= 0.

(2) Recall that e := lim,_, (1 + 3)".
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

lim a*p(x) = lim pin)

X—>—+00 n—+0w g

= 0.

2) Recall th li 1+ 4 Inf. h
ecall that e := im0 (1 + n fact we have

1\~ 1\~
[im (1 + —) = |im <1 + —) = e.
X—+00 X X——00 X
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

lim a*p(x) = lim pin)

X—>—+00 n—+0w g

= 0.

2) Recall th li 1+ 4 Inf. h
ecall that e := im0 (1 + n fact we have

1\~ 1\~
[im (1 + —) = |im <1 + —) = e.
X—+00 X X——00 X

(3) We have lim, o 2% = 1.

X
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

lim a*p(x) = lim pin)

X—>—+00 n—+0w g

= 0.

2) Recall th li 1+ 4 Inf. h
ecall that e := im0 (1 + n fact we have

1\~ 1\~
[im (1 + —) = |im <1 + —) = e.
X—+00 X X——00 X

(3) We have lim, o 2% = 1. Clearly lim,_, Sizx =0.

X
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Often appeared limits

(1) Let p(x) be a polynomial then for any a > 1 we have

lim a*p(x) = lim pin)

X—>—+00 n—+0w g

= 0.

2) Recall th li 1+ 4 Inf. h
ecall that e := im0 (1 + n fact we have

1\~ 1\~
[im (1 + —) = |im <1 + —) = e.
X—+00 X X——00 X

(3) We have lim, o 2% = 1. Clearly lim,_, Sizx =0.

X

Ok, let's have 10 minutes break!
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