Limits of functions

Lecturer: Changhao CHEN

The Chinese University of Hong Kong

21 Feb 2020

Plan

- Continue on limits of functions
- 10 min break
- Continuous functions

Excises

Find the following limits:

$$\lim_{x \to 1} 5x^3 + x^2 + 1$$

$$\lim_{x \to 3} \frac{x+2}{x^2+1}$$

$$\lim_{x \to 0} \left(\frac{1}{x} - \frac{1}{x+1}\right)$$

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right)$$

Sandwich Theorem for Functions

Theorem

If
$$f(x) \leq g(x) \leq h(x)$$
 for all $x \in \mathbb{R} \setminus \{x_0\}$ and

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = L,$$

then $\lim_{x\to x_0} g(x) = L$.

Sandwich Theorem for Functions

Theorem

If
$$f(x) \leq g(x) \leq h(x)$$
 for all $x \in \mathbb{R} \setminus \{x_0\}$ and

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} h(x) = L,$$

then $\lim_{x\to x_0} g(x) = L$.

Find the limit

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right).$$

Find the limit

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right).$$

Answer: For any $x \neq 0$ we have $-1 \leqslant \cos\left(\frac{1}{x}\right) \leqslant 1$,

Find the limit

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right).$$

Answer: For any $x \neq 0$ we have $-1 \leqslant \cos\left(\frac{1}{x}\right) \leqslant 1$, and hence $-x^2 \leqslant x^2 \cos\left(\frac{1}{x}\right) \leqslant x^2$.

Find the limit

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right).$$

Answer: For any $x \neq 0$ we have $-1 \leqslant \cos\left(\frac{1}{x}\right) \leqslant 1$, and hence $-x^2 \leqslant x^2 \cos\left(\frac{1}{x}\right) \leqslant x^2$. Thus Sandwich Theorem implies $\lim_{x\to 0} x^2 \cos\left(\frac{1}{x}\right) = 0$.

Find the limit

$$\lim_{x \to 0} x^2 \cos\left(\frac{1}{x}\right).$$

Answer: For any $x \neq 0$ we have $-1 \leqslant \cos\left(\frac{1}{x}\right) \leqslant 1$, and hence $-x^2 \leqslant x^2 \cos\left(\frac{1}{x}\right) \leqslant x^2$. Thus Sandwich Theorem implies $\lim_{x\to 0} x^2 \cos\left(\frac{1}{x}\right) = 0$.

Limits at infinity of functions

Limits at infinity of functions

Firstly recall $\lim_{n\to\infty} a_n$.

Limits at infinity of functions

Firstly recall $\lim_{n\to\infty} a_n$.

Definition

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. If f(x) gets closer and closer to a real number L as x gets bigger and bigger, then L is called the limit of f(x) at positive $+\infty$. We write

$$\lim_{x\to +\infty} f(x) = L.$$

$$x \to +\infty \implies f(x) \to L$$
.

Limits at infinity

Similarly definition for the limit at negative infinity $-\infty$, that is

$$\lim_{x\to -\infty} f(x).$$

Limits at infinity

Similarly definition for the limit at negative infinity $-\infty$, that is

$$\lim_{x\to -\infty} f(x).$$

Limits at infinity

Similarly definition for the limit at negative infinity $-\infty$, that is

$$\lim_{x\to -\infty} f(x).$$

From this picture we could write

$$\lim_{x\to +\infty} f(x) = L \quad \text{and} \quad \lim_{x\to -\infty} f(x) = M.$$

Find $\lim_{x\to +\infty} \frac{1}{x}$, $\lim_{x\to -\infty} \frac{1}{x}$, $\lim_{x\to 1} \frac{1}{x}$ and $\lim_{x\to 0} \frac{1}{x}$.

Find $\lim_{x\to +\infty} \frac{1}{x}$, $\lim_{x\to -\infty} \frac{1}{x}$, $\lim_{x\to 1} \frac{1}{x}$ and $\lim_{x\to 0} \frac{1}{x}$.

Find limits of

$$\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n, \quad \lim_{n\to-\infty} 2^n.$$

Find limits of

$$\lim_{n\to+\infty} \left(\frac{1}{2}\right)^n, \quad \lim_{n\to-\infty} 2^n.$$

In fact we also have

$$\lim_{x \to +\infty} \left(\frac{1}{2}\right)^x = 0 \quad \lim_{x \to -\infty} 2^x = 0.$$

Theorem

If 0 < a < 1 then $\lim_{x \to +\infty} a^x = 0$.

Theorem

If 0 < a < 1 then $\lim_{x \to +\infty} a^x = 0$.

If a > 1 then $\lim_{x \to -\infty} a^x = 0$.

Theorem

If 0 < a < 1 then $\lim_{x \to +\infty} a^x = 0$.

If a > 1 then $\lim_{x \to -\infty} a^x = 0$.

$$\lim_{x \to +\infty} f(x) + g(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x) + g(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x) - g(x) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x) + g(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x) - g(x) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x)g(x) = \lim_{x \to +\infty} f(x) \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x) + g(x) = \lim_{x \to +\infty} f(x) + \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x) - g(x) = \lim_{x \to +\infty} f(x) - \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} f(x)g(x) = \lim_{x \to +\infty} f(x) \lim_{x \to +\infty} g(x);$$

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \frac{\lim_{x \to +\infty} f(x)}{\lim_{x \to +\infty} g(x)}, \quad \text{if} \quad \lim_{x \to +\infty} g(x) \neq 0.$$

Find $\lim_{x\to+\infty} \frac{3x^2}{x^2+x+1}$.

Find
$$\lim_{x\to+\infty} \frac{3x^2}{x^2+x+1}$$
.

$$\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1}$$

Find
$$\lim_{x\to+\infty} \frac{3x^2}{x^2+x+1}$$
.

$$\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1}$$

$$= \lim_{x \to +\infty} \frac{3}{1 + \frac{1}{x} + \frac{1}{x^2}}$$

Find
$$\lim_{x\to+\infty} \frac{3x^2}{x^2+x+1}$$
.

$$\lim_{x \to +\infty} \frac{3x^2}{x^2 + x + 1}$$

$$= \lim_{x \to +\infty} \frac{3}{1 + \frac{1}{x} + \frac{1}{x^2}}$$

$$= \frac{3}{1 + 0 + 0} = 3.$$

Rational polynomials

Example

Let p(x) and q(x) are polynomials that

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$$
 with $a_m \neq 0$ and $q(x) = b_n x^n + a_{n-1} x^{n-1} + \ldots + b_1 x + b_0$ with $b_n \neq 0$. Then

Rational polynomials

Example

Let p(x) and q(x) are polynomials that

$$p(x) = a_m x^m + a_{m-1} x^{m-1} + \ldots + a_1 x + a_0$$
 with $a_m \neq 0$ and $q(x) = b_n x^n + a_{n-1} x^{n-1} + \ldots + b_1 x + b_0$ with $b_n \neq 0$. Then

$$\lim_{x \to +\infty} \frac{p(x)}{q(x)} = \begin{cases} \frac{a_m}{b_n} & \text{if } m = n \\ 0 & \text{if } m < n \\ \pm \infty & \text{if } m > n \end{cases}$$

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x \to +\infty} a^{-x} p(x) = \lim_{n \to +\infty} \frac{p(n)}{a^n} =$$

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x \to +\infty} a^{-x} p(x) = \lim_{n \to +\infty} \frac{p(n)}{a^n} = 0.$$

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x \to +\infty} a^{-x} p(x) = \lim_{n \to +\infty} \frac{p(n)}{a^n} = 0.$$

(2) Recall that $e := \lim_{n \to +\infty} (1 + \frac{1}{n})^n$.

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x \to +\infty} a^{-x} p(x) = \lim_{n \to +\infty} \frac{p(n)}{a^n} = 0.$$

(2) Recall that $e := \lim_{n \to +\infty} (1 + \frac{1}{n})^n$. In fact we have

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x \to +\infty} a^{-x} p(x) = \lim_{n \to +\infty} \frac{p(n)}{a^n} = 0.$$

(2) Recall that $e := \lim_{n \to +\infty} (1 + \frac{1}{n})^n$. In fact we have

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x}\right)^x = e.$$

(3) We have $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x\to +\infty} a^{-x} p(x) = \lim_{n\to +\infty} \frac{p(n)}{a^n} = 0.$$

(2) Recall that $e := \lim_{n \to +\infty} (1 + \frac{1}{n})^n$. In fact we have

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

(3) We have $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Clearly $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$.

Theorem

(1) Let p(x) be a polynomial then for any a > 1 we have

$$\lim_{x\to +\infty} a^{-x} p(x) = \lim_{n\to +\infty} \frac{p(n)}{a^n} = 0.$$

(2) Recall that $e := \lim_{n \to +\infty} (1 + \frac{1}{n})^n$. In fact we have

$$\lim_{x \to +\infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to -\infty} \left(1 + \frac{1}{x} \right)^x = e.$$

(3) We have $\lim_{x\to 0} \frac{\sin x}{x} = 1$. Clearly $\lim_{x\to +\infty} \frac{\sin x}{x} = 0$.

Ok, let's have 10 minutes break!

